Copied to
clipboard

G = C32xD5order 90 = 2·32·5

Direct product of C32 and D5

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C32xD5, C15:2C6, C5:(C3xC6), (C3xC15):3C2, SmallGroup(90,5)

Series: Derived Chief Lower central Upper central

C1C5 — C32xD5
C1C5C15C3xC15 — C32xD5
C5 — C32xD5
C1C32

Generators and relations for C32xD5
 G = < a,b,c,d | a3=b3=c5=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 48 in 24 conjugacy classes, 18 normal (6 characteristic)
Quotients: C1, C2, C3, C6, C32, D5, C3xC6, C3xD5, C32xD5
5C2
5C6
5C6
5C6
5C6
5C3xC6

Smallest permutation representation of C32xD5
On 45 points
Generators in S45
(1 44 24)(2 45 25)(3 41 21)(4 42 22)(5 43 23)(6 31 26)(7 32 27)(8 33 28)(9 34 29)(10 35 30)(11 36 16)(12 37 17)(13 38 18)(14 39 19)(15 40 20)
(1 14 9)(2 15 10)(3 11 6)(4 12 7)(5 13 8)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)(32 35)(33 34)(37 40)(38 39)(42 45)(43 44)

G:=sub<Sym(45)| (1,44,24)(2,45,25)(3,41,21)(4,42,22)(5,43,23)(6,31,26)(7,32,27)(8,33,28)(9,34,29)(10,35,30)(11,36,16)(12,37,17)(13,38,18)(14,39,19)(15,40,20), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)>;

G:=Group( (1,44,24)(2,45,25)(3,41,21)(4,42,22)(5,43,23)(6,31,26)(7,32,27)(8,33,28)(9,34,29)(10,35,30)(11,36,16)(12,37,17)(13,38,18)(14,39,19)(15,40,20), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44) );

G=PermutationGroup([[(1,44,24),(2,45,25),(3,41,21),(4,42,22),(5,43,23),(6,31,26),(7,32,27),(8,33,28),(9,34,29),(10,35,30),(11,36,16),(12,37,17),(13,38,18),(14,39,19),(15,40,20)], [(1,14,9),(2,15,10),(3,11,6),(4,12,7),(5,13,8),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29),(32,35),(33,34),(37,40),(38,39),(42,45),(43,44)]])

C32xD5 is a maximal subgroup of   C32:3F5

36 conjugacy classes

class 1  2 3A···3H5A5B6A···6H15A···15P
order123···3556···615···15
size151···1225···52···2

36 irreducible representations

dim111122
type+++
imageC1C2C3C6D5C3xD5
kernelC32xD5C3xC15C3xD5C15C32C3
# reps1188216

Matrix representation of C32xD5 in GL3(F31) generated by

2500
010
001
,
100
050
005
,
100
0301
01713
,
3000
0300
0171
G:=sub<GL(3,GF(31))| [25,0,0,0,1,0,0,0,1],[1,0,0,0,5,0,0,0,5],[1,0,0,0,30,17,0,1,13],[30,0,0,0,30,17,0,0,1] >;

C32xD5 in GAP, Magma, Sage, TeX

C_3^2\times D_5
% in TeX

G:=Group("C3^2xD5");
// GroupNames label

G:=SmallGroup(90,5);
// by ID

G=gap.SmallGroup(90,5);
# by ID

G:=PCGroup([4,-2,-3,-3,-5,1155]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^5=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C32xD5 in TeX

׿
x
:
Z
F
o
wr
Q
<